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One of the most striking features of multiple-metal transition-
metal complexes lies in their susceptibility to significant changes 
in spin state with only modest structural perturbations.1^1 In 
view of the ubiquity of such complexes in metalloproteins,5 it 
seems important to understand the origin of these unusual 
magnetic properties. However, fundamentally the same kinds of 
interacting spin systems have proven equally stimulating to the 
physics community for an entirely different reason: the possibility 
of novel kinds of spin ordering in solids6 (one of which may be 
implicated in high-temperature superconductivity).7 What we 
wish to report in this communication is that one of the lessons 
garnered from studying the physics of quantum mechanical spin 
systems suffices not only to explain the origin of the variable spin 
states but also to provide a simple computational route to 
quantitative predictions of magnetic behavior in transition-metal 
complexes. We illustrate these ideas by applying them to two 
recently synthesized hexanuclear Fe compounds.4 

The kinds of phenomenology exhibited by the polynuclear 
complexes can be seen in Figure 1. In each case, the metal ions 
are in a high-spin environment, so the systems can be thought of 
as collections of quantum mechanical spin-5/2 (or spin-2) spins 
coupled antiferromagnetically to each other. That is, the relevant 
Hamiltonian is approximately of the Heisenberg form 

/A 
with S the spin operator for the spin on atom j and the coupling 
constants /,* negative.8 Given this Hamiltonian, one would expect 
the antialignment tendency of antiferromagnetic couplings to 
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Figure 1. Sensitivity of total spin ST to structural details in polynuclear 
transition-metal complexes. Upper left: 1 [Mn11Mn1H2O(O2CPh)6(Py)2-
(H2O)-V2(CH3CN) (S x = Va), 2 [Mn11Mn111JO(O2CMe)6(Py)3I-(Py) 
(ST = 3 / 2 ) , refs 2c,d. Upper right: 3 a-Mn"Mnln

2(SALADHP)2(02-
CR)4L2 (ST = 3/2), ref 2a. Middle: 4 [Fenl

402(02CMe)7(bpy)2]-
(ClO4VV4CH2Cl2-H2O (ST = O), ref 3b. 5 [Mnm

402(02CMe)7(bpy)2]-
(ClO4) (ST = 3), ref 3a. Lower left: 6 [Fem

602(OH)2-
(OH2)(02CPh),2(l,4-dioxane)] (ST = O), ref 4b. Lower right: 7 
[FeI"602(OH)2(02CMe)io(diimidazole)2]^CH2Cl2 (S7 = 5), ref 4a. 

favor a net 0 (or at least a minimal) overall spin for the complexes, 
and, indeed, one often sees such results. Yet, one also finds very 
similar complexes with a higher net spin value. Even more 
dramatic examples of spin variability are seen in (FeS)4 cubane 
complexes.9 

It is clear that the origin of the nonzero spins lies in the topology 
of the complexes.1 With odd-membered rings present, spins are 
frustrated: it is mathematically impossible to satisfy the desire 
of every spin to be antialigned with its neighbors.10 However, the 
actual spin configuration the complexes do adopt can be difficult 
to visualize because the number of possible quantum states grows 
very quickly with the size of the molecule and with the spins of 
the individual ions. Indeed, discerning magnetic properties by 
a straightforward diagonalization of eq 1 can involve a major 
computation; a complex with /V ions, each of spin s, requires 
diagonalizing a (2s + \)N X (2s + I)"matrix (46 656 X 46 656 
for the Fe6 complexes).43 Nonzero-temperature properties such 
as the susceptibility can pose even more of a challenge. 

The alternative we propose takes advantage of the fact that for 
large enough values of the spin, a quantum mechanical spin 
behaves as if it were a classical Heisenberg spin—an ordinary 
vector free to point in any direction in three dimensions.11 That 
is, suppose we keep the Hamiltonian of eq 1 but replace the spin 
operators S; by the vectors S, = SQ/, with Qy a unit vector located 
on they'-th metal ion. The total spin magnitude of the complex, 
Sj, is then defined to be the magnitude of the sum of the vectors 
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Figure 2. Classical ground-state spin configurations for trinuclear and 
hexanuclear complexes with spin-5/2 metal ions and the coupling constants 
indicated. The lower left and lower right configurations are for parameters 
appropriate to complexes 6 and 7, respectively. 

S/ 

sT
2 = ( £ s / = I>A (2) 

Hence the ground-state spin is determined by finding the 
arrangement ofunit vectors that minimizes the energy, eq 1 (which 
is now a function instead of an operator). Similarly, the effective 
moment can be computed as a function of temperature by taking 
the classical ensemble average 

Mcff = g((ST
2)) 

1/2 (3) 

with g the Lande g-factor and the ensemble average of any quantity 
X defined in the usual classical statistical mechanical way 

(X) = JdO 1 . . . JdQNXexpH^O/e 

Q = JdQ1 . . . jdQN exp(-/3#) (4) 

Here /3 = l/ik^T), and each unit vector is to be integrated over 
4ir steradians. 

These formulas are only exact in the limit that the individual 
atomic spins become infinite.11 However, the surprising obser
vation is that they turn out to be quantitatively accurate for the 
not-all-that-large spins s relevant to high-spin transition-metal 
ions, provided that one identifies S, the magnitude of the classical 
vectors, as s itselffor computing the total spin and as [s(s+ I)]1/2 

when computing the effective moment.12 

Typical predictions of this model for ground states are shown 
in Figure 2 for some high-spin Fe111 (s = V2) complexes. It is 
easy to show analytically that the model leads to differing ground-
state spins with just minor modifications to the ratios of coupling 
constants. In fact, one can understand the findings qualitatively 
by examining the minimum-energy orientations of the classical 
vectors. The triangular case, for example, switches from having 
three coplanar spins at 120° angles, through a succession of 
intermediate angles, to a two-spins-down, one-spin-up motif when 
the sum of favorable J f + f 1 energies becomes sufficiently larger 
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Figure 3. Temperature dependence of the effective magnetic moment 
(in units of MB) for hexanuclear complexes 6(D) and 7 (O). Open symbols 
are experimental data (refs 4b and 4a, respectively), and the filled symbols 
are theoretical predictions based on the classical model using g = 1 .94MB 
(ref 4a) and Hamiltonian parameters fit to data above 90 K (see ref 8): 
In cm"1, (-J1, -/b, -/„. -Ji) = (35.9 ± 0.1, 35.9 ±0.1, 12.6 ± 0.2, 15.0 
± 0.02), and (35.0 ± 0.05, 5.53 ± 0.25, 12.5 ± 0.09, 33.6 ± 0.02) for 
6 and 7, respectively. The / s are labeled as in Figure 2. 

than the unfavorable U energy.13 Similarly, the hexanuclear 
case can either be, or not be, dominated by the energetics of the 
spins around the central rectangle, depending on the coupling 
constant ratios. 

The ground-state predictions of the classical model are in 
remarkable agreement with the experimental magnetic mea
surements, not only for the complexes portrayed in Figure 2 but 
also for the other complexes displayed in Figure 1. Using the 
literature values of the coupling constants for complexes 1-5, one 
finds the measured and calculated ground-state spin values to be 
(V2, 1.11), (3/2 , V2). (72, V J ) . (0, 0). and (3, 2.67), 
respectively.2a,c'd,3a,b'4 Susceptibility studies had also been per
formed on the hexanuclear examples, but the sheer size of the 
quantum mechanical problem had precluded any previous 
determination of the coupling constants.4* However, since it is 
straightforward to evaluate the (12-dimensional) integrals in eq 
4 repeatedly by Monte Carlo methods,14 we were able to determine 
the coupling constants by a Levenberg-Marquardt15 least-squares 
fit of the experimental data to eq 4. Besides giving the correct 
ground-state spins, the fits, shown in Figure 3, indicate the 
usefulness of the classical model for understanding the spin system 
thermodynamics—and the inappropriateness of a picture based 
on simple t and j spin-'/2 spins. 
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